

Pipelined Architecture for Multi-String Matching
Derek Pao1, Wei Lin2,1, and Bin Liu2

1Department of Electronic Engineering, City University of Hong Kong, Hong Kong
2Department of Computer Science and Technology, Tsinghua University, Beijing, PRC

Abstract—We present a pipelined approach to hardware implementation of the Aho-Corasick (AC) algorithm for string matching called P-AC.
By incorporating pipelined processing, the state graph is reduced to a character trie that only contains forward edges. Edge reduction in P-AC
is very impressive and is guaranteed algorithmically. For a signature set with 4434 strings extracted from the Snort rule set, the memory cost
of P-AC is only 21.5 bits/char. The simplicity of the pipeline control plus the availability of 2-port memories allow us to implement two pipelines
sharing the set of lookup tables on the same device. By doing so, the system throughput can be doubled with little overhead. The throughput
of our method is up to 8.8 Gbps when the system is implemented using 550MHz FPGA.

Index Terms—string matching, deterministic finite automaton, pipelined processing, network intrusion detection.

1 INTRODUCTION

TRING matching has been extensively studied in the
past 30 years. A string Y of length n is a sequence of
characters c1c2�cn. Let � = {Y1, Y2, � YN} be a finite set of

strings called keywords or signatures, and let I be an arbitrary
string. The string matching problem is to locate and identify
all substrings of I which are signatures in �. There have
been renewed interests in hardware-assisted high-speed
string matcher prompted by the evolving applications in
real-time packet processing and network intrusion detection.

Many of the proposed hardware solutions are based on
the well-known Aho-Corasick (AC) algorithm [1], where the
system is modeled as a deterministic finite automaton
(DFA). The AC algorithm solves the string matching prob-
lem in time linearly proportional to the length of the input
stream. However, the memory requirement is prohibitive in
a straightforward hardware implementation. In this letter,
we present a pipelined processing approach to the imple-
mentation of AC algorithm, called P-AC. The control logic
of P-AC is simple and elegant. The memory cost is less than
30% of the best known AC-based methods. Our contribu-
tions are twofold. First, edge reduction in the state graph is
guaranteed algorithmically in P-AC. Previously published
AC-based methods are heuristic-based, such as bit-map en-
coding and path compression [13], bit-slice implementation
[12], categorizing alphabets based on frequency count [5],
and signature set partitioning [6]. Performance of these
methods is sensitive to the size and statistical properties of
the signature set. Second, we present a comprehensive ap-
proach to aggregate partial-matches for the processing of
long signatures. We show that by utilizing the timing in-
formation of the pipeline, only a small amount of history
information needs to be maintained by the system.

We shall restrict our discussion to the processing of sim-
ple strings in this letter. Extensions to handle strings de-
fined by regular expressions will be discussed in a full pa-
per. A brief review of related work is given in Section 2. The
proposed pipelined architecture will be presented in Section
3. Section 4 is the performance evaluation and Section 5 is
the conclusion.

2 BACKGROUND AND PREVIOUS WORK

In the basic AC automaton, the system starts from an initial
state, and looks up the transition rule table using the cur-
rent state and input character to determine the next state.
An entry in the transition rule table is a 3-tuple
E=(u=current state, i=input symbol, v=next state). A match-
result is generated when the system reaches an output state.

Figure 1. State graph for � ={apple, past}.

To facilitate discussion, we shall first introduce some

terminology. Figure 1 shows the state graph for a set of two
strings �={apple, past}. Each node in the state graph repre-
sents a distinct string value as shown in the node label. To
improve readability, transitions to the root are excluded.
The input symbol of a transition is equal to the last charac-
ter of the string represented by the corresponding destina-
tion node. A node in the state graph can be assigned a level
number according to the length of the string that it repre-
sents. The level number of the root node is equal to zero be-
cause its state value corresponds to the empty string. We
denote a node on level 1 as L1 node, and so on. An edge
E=(u, i, v) is called a forward edge if the level number of v is
equal to 1 plus the level number of u. Forward edges are
shown with solid lines in Fig. 1. The remaining edges are
called cross edges, and they are shown in dashed lines.

Tuck et al. [13] proposed a bit-map encoding and path
compression technique to reduce the memory cost of the
transition rule table. Tan and Sherwood [12] proposed to
use bit-split finite state machines (FSMs), where each bit-
split FSM processed one bit of an input byte. The signatures
are divided into groups of 16, such that the partial-match of

S

Manuscript submitted: 17-Jan-2008. Manuscript accepted: 06-Feb-2008. Revised-
manuscript received: 13-Feb-2008. Final manuscript received: 09-Apr-2008.

IEEE Computer Architecture Letters Vol. 7, 2008

Posted to the IEEE & CSDL on 5/30/2008
DOI 10.1109/L-CA.2008.5 1556-6056/08/$25.00 © 2008 Published by the IEEE Computer Society

a node can be represented by a bit-vector with 16 bits. Eight
bit-split FSMs are built for each group of 16 signatures.
Hence, the system contains N/2 FSMs. There are practical
difficulties and substantial overheads in implementing a
large number of FSMs in hardware. Dimopoulos et al. [5]
proposed to divide the 256 alphabets into frequent and infre-
quent characters based on their frequency counts in the sig-
nature set. A full state graph is constructed for frequent
characters, where the transition rule table for infrequent
characters is implemented using CAM. Lunteren [6] ob-
served that if the system supported prioritized tabl lookup,
all the edges pointing to a node v on L1 can be replaced by a
single entry (*, i, v) in the transition rule table, where * is a
wildcard. Similarly, all edges pointing to the root are re-
placed by a single entry (*, *, root). The number of edges can
be further reduced to about 1.5 edges per character by di-
viding the signature set into multiple groups. But the per-
formance of the partitioning scheme depends largely on the
size and statistical properties of the signature set. Alicherry
et al. [2] used ternary CAM (TCAM) to implement the tran-
sition rule table. In their method, state transitions are based
on multiple (typically 2 to 4) input characters. There are two
advantages in using multi-character based transitions. First
the size of the transition rule table is significantly reduced,
and second the throughput can be increased. However, im-
provements in speed and memory cost are partially offset
by the slower clock rate (maximum 266 MHz) and the
higher cost of TCAM.

There are also proposals based on other techniques, such
as hashing [3, 7, 11], Bloom filters [4, 9, 10], and CAM [11,
14]. A general drawback of these methods is that they can
only handle strings of up to certain length. Long signatures
are divided into multiple segments. Complex auxiliary data
structures [14] and/or hardwired aggregation logic [11] are
required to process the partial-matches. The aggregation
methods in some of the above studies are over-simplified.
For example, in [7, 11] a long signature can only be divided
into 2 segments; in [3] it does not consider the case where a
segment can be the first segment of one signature, and the
middle or last segment of some other signature(s) at the
same time.

3 PIPELINED ARCHITECTURE
3.1 Basic Idea
First we shall consider signatures that are case insensitive.
The processing of case sensitive signatures will be discussed
in Section 3.3. In the basic AC automaton, the longest
matching substring for the current input is represented by
the value of the current state. Suppose the input stream is
�appastxyz�. The DFA of Fig. 1 will visit nodes <a>, <ap>,
and <app> in the first 3 cycles. In the 4th cycle, the input
character �a� does not match the input symbol of any for-
ward edges originating from <app>. Hence, the DFA will
follow a cross edge and change to state <pa>.

In the proposed pipelined architecture, a new thread is
initiated to trace along the automaton starting from the cur-
rent input character in each cycle. By doing so, the system
only needs to store the forward edges in the transition rule
table. There is zero or one active state in each pipeline stage.

The active state in stage i represents a matching substring of
length i that ends at the last input character. In each cycle,
the input character is sent to all pipeline stages. The local
transition rule table of stage i stores the forward edges
originating from a node on Li to a destination node on Li+1.
Stage i will simply look up its local table using its local ac-
tive state and the input character, and pass the result to the
next stage. Table 1 shows the active states of the first 8 cy-
cles for the sample input stream �appastxyz�. Note that the
active state of stage 0 is always equal to <root>. When a
thread cannot proceed further with the current input, it is
terminated. In cycle 4, the thread of stage 3 is terminated
since the input character �a� does not match any of the for-
ward edges originating from node <app>. But another
thread will pick up the longest matching substring �pa�
without involving cross edges. A match-result for the string
�past� will be generated in cycle 7.

Table 1. Active states for the sample input �appastxyz�.
 Active state of pipeline stages
cycle input stage 0 stage 1 stage 2 stage 3 stage 4 stage 5

1 �a� <root>
2 �p� <root> <a>
3 �p� <root> <p> <ap>
4 �a� <root> <p> <app>
5 �s� <root> <a> <pa>
6 �t� <root> <pas>
7 �x� <root> <past>
8 �y� <root>

3.2 Processing of Long Signatures
In general, signatures can be longer than the hardware pipe-
line. Some refinements to the pipeline are necessary in order
to handle long strings. Assume the pipeline has k+1 stages
numbered from 0 to k, where the last stage is only used to
buffer the search result of stage k��1. Strings longer than k
characters are divided into segments of length k, except for
the last segment whose length can be less than k. Consider a
signature set with 4 strings � = {and, test, instructions, in-
strument}. Assume k is equal to 4, there are 7 segmented
strings {nt, and, ions, inst, ruct, rume, test}. Each segment is
assigned a unique segment ID and a Boolean flag L. L is
equal to 1 if the segment is part of a long string. Detection of
a segment with L equals to 1 represents a partial-match of a
long signature. Partial-matches are aggregated by a DFA
constructed using the ID of full-length segments as shown
in Fig. 2. The method of [6] is applied to reduce the number
of cross edges that point to the root and L1 nodes.

Figure 2. DFA for aggregation of partial-matches.

IEEE Computer Architecture Letters Vol. 7, 2008

Organization of the pipeline system is depicted in Fig. 3.
The local transition tables (LT) can be implemented using
hardware hashing. Match-results for strings with no more
than k characters are generated by the pipeline unit directly
(the output paths of the pipeline unit are not shown in the
diagram to enhance readability). For long strings with more
than k characters, the match-result will be generated by the
aggregation unit (AU).

Figure 3. Organization of the pipeline system for k=4.

When the pipeline unit detects a full-length segment, the
corresponding segment ID will be passed to the DFA unit of
the AU if the L bit of the segment is equal to 1. The AU
maintains a buffer (shift register) that stores the previously
aggregated state values. Contents of the buffer are shifted to
the right by one slot in each cycle. When a new segment ID
is received, the state value corresponding to the preceding
segment detected at k cycles ago, if any, will be stored in the
last buffer slot Bk. The DFA unit uses the state value stored
in Bk and the new segment ID to look up the transition rule
table TD to determine the next state. If there is no matching
rule found, the <root> is taken as the default next state. The
lookup result will be shifted into the buffer at the start of
the next cycle. If the pipeline unit detects the last segment of
a long string, where the segment length is less than k, the
segment ID will be passed to the corresponding partial-
match unit (PMi) of the AU. If the state value stored in
buffer Bi is not equal to <root>, PMi sends a lookup request
to the conditional match table (CMT); otherwise PMi will
simply discard the segment ID. Tables 2 and 3 show the
transition rule table for the DFA and the CMT.

Let�s consider an example with the input data stream
equals to �test instrument ��. In cycle 5 the last stage of the
pipeline detects the string �test�. In cycle 10, the pipeline
unit detects the segment �inst� and passes its segment ID
SD to the AU. The state value <SD> will then be shifted into
B1 at the start of the next cycle. In cycle 14, the pipeline de-
tects the segment �rume� and sends the segment ID SF to
the AU. At this moment, the state value <SD> would have

been shifted down to buffer slot B4. The DFA unit looks up
table TD using the state value <SD> and the segment ID SF
to find the next state <SDSF>. In cycle 16, the segment �nt�
is detected at stage 2 of the pipeline unit. At this moment,
the state value <SDSF> is stored in buffer slot B2. On receiv-
ing the segment ID SA for �nt�, PM2 sends a lookup request
to the CMT and finds the matched string �instrument�.

Table 2. Transition rule table for the DFA.

Current state Input Next state Matched string
* SD SD

SD SE SDSE

SD SF SDSF

SDSE SC SDSESC �instructions�

Table 3. Conditional match table.

State Input Matched string
SDSF SA �instrument�

In principle the pipeline unit may find a matched seg-

ment in each stage at each cycle. As a result, concurrent ac-
cess to the CMT may be required. When there are multiple
access requests, the requests are queued and served in FIFO
order. However, concurrent access to the CMT are unlikely
to happen except when the signature set contains strings of
different lengths that are composed of sequences of the
same character or some short repetitive patterns, e.g.
�aaaaa�, �aaaaaa�, �aaaaaaa�, and the input stream contains
a long sequence of the letter �a�. To resolve this problem,
each PM caches the last lookup request to the CMT. If the
new lookup request is the same as the cached request, the
lookup result will be provided by the cache directly.

3.3 Handling Case Sensitive Signatures
We adopt the match and verify strategy to handle case sen-
sitivity. All the signatures and the input data stream are
converted to lower case letters. Case sensitivity is verified
after a matching string has been found. In the ASCII code,
the 5-th bit for a lower case letter is equal to 1, where the 5-
th bit for an upper case letter is equal to 0. We can modify
the hardware in such a way that the original value of the 5-
th bit of each byte of input data is extracted and stored in a
bit-vector. There is a control bit associated with the match-
result that indicates whether the matched string is case sen-
sitive or not. If the matched string is case sensitive, the sys-
tem compares the extracted bit-vector with the correspond-
ing bit-vector of the signature to confirm the match result.

4 PERFORMANCE EVALUATION

We extract 4434 distinct signatures from the Snort rule set
[8]. The signatures are converted into lower case letters. The
average signature length is about 19 characters, and the to-
tal character count is 84015. About 98% of the signatures
have no more than 64 characters.

Our evaluation indicates that better memory efficiency
is obtained when the segment length is in the range of 4 to

IEEE Computer Architecture Letters Vol. 7, 2008

6. For k=4, the number of entries in the lookup tables for the
pipeline unit, the DFA unit, and CMT are 22031, 19289, and
3076, respectively. The width of the state ID for the pipeline
unit and the DFA unit are 15 bits and 14 bits, respectively.
The amount of memory space occupied by the entries of the
lookup tables is 220KB. A performance comparison with 4
other AC-based methods is given in Table 4. The memory
cost of P-AC, BFPM [6], and the TCAM-based method of [2]
are evaluated using the same signature set. When the given
signature set is divided into eight groups in BPFM, the
number of edges per character is about 2.5. With 36-bit
lookup table entries, the memory cost for BFPM is about 90
bits/char. In [2], we assume state transitions are based on 2
input characters per cycle. The hardware cost of bit-split
FSM [12] and split-AC [5] are quoted from [5]. Both bit-split
FSM and split-AC require complex control logic. For the
split-AC method, there can be tradeoff between memory
cost and control logic. The chip area for a FPGA logic cell is
approximately the same as 12 bytes of memory [11]. Hence,
the actual hardware cost for the 2 sets of implementation
parameters shown in Table 4 are more or less the same.

Table 4. Comparison with AC-based methods
Method Signature

Set (chars)
Memory
(per char)

Control
logic

Speed
(char/cycle)

bit-split FSM 12.8K 186 bits complex 1
65 bits 60061 LUTs split-AC 24K
189 bits 12341 LUTs

1
(slower clk)

BFPM
(8 groups)

84K 90 bits simple 1

TCAM
(2 char/cycle)

84K 56 bits TCAM +
27 bits SRAM

simple 2 to 4 (max
266MHz clk)

P-AC 84K 21.5 bits simple 2 (with dual
pipelines)

The control logic for P-AC is simple. Pipelining of output

results from one stage to the next stage can be realized by
simple clocked-register. There are k+3 memories in the
system (k memories for the pipeline unit, 2 memories for the
DFA units and 1 memory for the CMT). The DFA unit
requires 2 memories because there are 2 types of edges, one
type with the current state equals to don�t care and the
second type with current state not equal to don�t care. LT0 is
a 256-entry table indexed by the input character. A hash
function generator and a comparator will be required for
each of the remaining lookup tables. With k=4, the length of
the hash key is up to 29 bits for the signature set used in this
study. We estimate that the control logic for the lookup
tables can be implemented using about 1000 LUTs.

Two-port memories are available in commercial FPGAs.
Hence, two pipelines can be built on the same device shar-
ing the set of lookup tables. By doing so, the system
throughput can be doubled with little overhead. Using the
Xilinx Virtex-5 FPGA that operates at 550 MHz, the
throughput of P-AC is up to 8.8 Gbps. Higher throughput
can be possible by using ASIC implementation or faster
FPGAs from Achronix Semicondutor that can operate at 1.6
to 2.2 GHz.

5 CONCLUSION

A pipelined approach for hardware implementation of the
Aho-Corasick algorithm called P-AC is presented. The sys-
tem maintains multiple threads that traverse the automaton
concurrently. Only forward edges of the state graph need to
be stored in the lookup tables. In contrast to previously
published heuristic-based methods, edge reduction in P-AC
is guaranteed algorithmically. This is an advantage that en-
sures scalability of the method in handling fast expanding
signature sets of network intrusion detection systems. For a
signature set with 4434 strings extracted from Snort, the
memory cost of P-AC is as low as 21.5 bits/char, which is
less than 30% of the best known AC-based methods. Sim-
plicity and elegance of the pipeline control allows the sys-
tem to operate at high clock rate. In addition, if 2-port
memories are available, we can implement 2 pipelines on
the same device that share the lookup tables. As a result, the
system throughput can be doubled with little overhead. The
throughput of P-AC is up to 8.8 Gbps when the system is
implemented using 550 MHz FPGA.

ACKNOWLEDGMENT
This work is partially supported by NSFC (No. 60573121,
60625201), and China-973 program (No. 2007CB310701). The au-
thors like to thank Dr. H. F. Li, Dr. Clement Lam, Dr. Hongbin Lu,
editors of CAL, and the anonymous reviewers for their construc-
tive comments.

REFERENCES
[1] A. V. Aho, M. J. Corasick, �Efficient string matching: an aid to biblio-

graphic search�, Comm. of the ACM, Vol. 18, No. 6, pp. 333-340, 1975.
[2] M. Alicherry, M. Muthuprasanna, V. Kumar, �High speed matching

for network IDS/IPS�, IEEE ICNP, pp. 187-196, 2006.
[3] Y. H. Cho, W. H. Mangione-Smith, �A pattern matching co-processor

for network security�, IEEE DAC, pp. 234-239, 2005.
[4] S. Dharmapurikar, P. Krishnamurthy, T. S. Sproull, J. W. Lockwood,

�Deep packet inspection using parallel Bloom filters�, IEEE Micro, pp.
52-61, Jan.-Feb. 2004.

[5] V. Dimopoulos, I. Papaefstathiou, D. Pnevmatikatos, �A memory-
efficient reconfigurable Aho-Corasick FSM implementation for intru-
sion detection systems�, IEEE IC-SAMOS, pp. 186-193, 2007.

[6] J. van Lunteren, �High-performance pattern-matching for intrusion
detection�, IEEE INFOCOM, pp. 1-13, 2006.

[7] G. Papadopoulos, D. Pnevmatikatos, �Hashing + memory = low cost,
exact pattern matching �, IEEE Int. Conf. on Field Programmable
Logic and Applications, pp. 39-44, 2005.

[8] SNORT network intrusion detection system, http://www.snort.org
[9] H. Song, T. Sproull, M. Attig, and J. Lockwood, �SNORT offloader: a

reconfigurable hardware NIDS filter�, IEEE Int. Conf. on Field Pro-
grammable Logic and Applications, pp. 493-498, 2005.

[10] H. Song, J. W. Lockwood, �Multi-pattern signature matching for
hardware network intrusion detection systems�, IEEE GLOBECOM,
pp. 1686-1690, 2005.

[11] I. Sourdis, D. Pnevmatikatos, S. Vassiliadis, �Scalable multigigabit
pattern matching for packet inspection�, IEEE Trans. on VLSI Sys-
tems, Vol. 16, Issue 2, pp. 156-166, Feb. 2008.

[12] L. Tan, T. Sherwood, �A high throughput string matching architecture
for intrusion detection and prevention�, IEEE ISCA, pp. 112-122, 2005.

[13] N. Tuck, T. Sherwood, B. Calder, G. Varghese, �Deterministic mem-
ory-efficient string matching algorithms for intrusion detection�, IEEE
INFOCOM, pp. 2628-2639, 2004.

[14] F. Yu, R. H. Katz, T. V. Lakshman, �Gigabit rate packet pattern-
matching using TCAM�, IEEE ICNP, pp. 174-183, 2004.

IEEE Computer Architecture Letters Vol. 7, 2008

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles false
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (None)
 /CalRGBProfile (None)
 /CalCMYKProfile (None)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.6
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.1000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 0
 /ParseDSCComments false
 /ParseDSCCommentsForDocInfo false
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo false
 /PreserveFlatness true
 /PreserveHalftoneInfo true
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 36
 /ColorImageMinResolutionPolicy /Warning
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 2.00333
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 36
 /GrayImageMinResolutionPolicy /Warning
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 2.00333
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 36
 /MonoImageMinResolutionPolicy /Warning
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.00167
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /False

 /CreateJDFFile false
 /Description <<
 /JPN <FEFF3053306e8a2d5b9a306f300130d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f00200050004400460020658766f830924f5c62103059308b3068304d306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103057305f00200050004400460020658766f8306f0020004100630072006f0062006100740020304a30883073002000520065006100640065007200200035002e003000204ee5964d30678868793a3067304d307e30593002>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e0020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f0062006100740020006f0064006500720020006d00690074002000640065006d002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /FRA <FEFF004f007000740069006f006e00730020007000650072006d0065007400740061006e007400200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e007400730020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e00200049006c002000650073007400200070006f0073007300690062006c0065002000640027006f00750076007200690072002000630065007300200064006f00630075006d0065006e007400730020005000440046002000640061006e00730020004100630072006f0062006100740020006500740020005200650061006400650072002c002000760065007200730069006f006e002000200035002e00300020006f007500200075006c007400e9007200690065007500720065002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300740061007300200063006f006e00660069006700750072006100e700f5006500730020007000610072006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000500044004600200063006f006d00200075006d0061002000760069007300750061006c0069007a006100e700e3006f0020006500200069006d0070007200650073007300e3006f00200061006400650071007500610064006100730020007000610072006100200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f0073002000500044004600200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002c002000520065006100640065007200200035002e00300020006500200070006f00730074006500720069006f0072002e>
 /DAN <FEFF004200720075006700200064006900730073006500200069006e0064007300740069006c006c0069006e006700650072002000740069006c0020006100740020006f0070007200650074007400650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650072002000650067006e006500640065002000740069006c0020007000e5006c006900640065006c006900670020007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e007400650072006e00650020006b0061006e002000e50062006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /NLD <FEFF004700650062007200750069006b002000640065007a006500200069006e007300740065006c006c0069006e00670065006e0020006f006d0020005000440046002d0064006f00630075006d0065006e00740065006e0020007400650020006d0061006b0065006e00200064006900650020006700650073006300680069006b00740020007a0069006a006e0020006f006d0020007a0061006b0065006c0069006a006b006500200064006f00630075006d0065006e00740065006e00200062006500740072006f0075007700620061006100720020007700650065007200200074006500200067006500760065006e00200065006e0020006100660020007400650020006400720075006b006b0065006e002e0020004400650020005000440046002d0064006f00630075006d0065006e00740065006e0020006b0075006e006e0065006e00200077006f007200640065006e002000670065006f00700065006e00640020006d006500740020004100630072006f00620061007400200065006e002000520065006100640065007200200035002e003000200065006e00200068006f006700650072002e>
 /ESP <FEFF0055007300650020006500730074006100730020006f007000630069006f006e006500730020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000500044004600200071007500650020007000650072006d006900740061006e002000760069007300750061006c0069007a006100720020006500200069006d007000720069006d0069007200200063006f007200720065006300740061006d0065006e0074006500200064006f00630075006d0065006e0074006f007300200065006d00700072006500730061007200690061006c00650073002e0020004c006f007300200064006f00630075006d0065006e0074006f00730020005000440046002000730065002000700075006500640065006e00200061006200720069007200200063006f006e0020004100630072006f00620061007400200079002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004e00e4006900640065006e002000610073006500740075007300740065006e0020006100760075006c006c006100200076006f006900740020006c0075006f006400610020006a0061002000740075006c006f00730074006100610020005000440046002d0061007300690061006b00690072006a006f006a0061002c0020006a006f006900640065006e0020006500730069006b0061007400730065006c00750020006e00e400790074007400e400e40020006c0075006f00740065007400740061007600610073007400690020006c006f00700070007500740075006c006f006b00730065006e002e0020005000440046002d0061007300690061006b00690072006a0061007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f006200610074002d0020006a0061002000520065006100640065007200200035002e00300020002d006f0068006a0065006c006d0061006c006c0061002000740061006900200075007500640065006d006d0061006c006c0061002000760065007200730069006f006c006c0061002e>
 /ITA <FEFF00550073006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e007400690020005000440046002000610064006100740074006900200070006500720020006c00610020007300740061006d00700061002000650020006c0061002000760069007300750061006c0069007a007a0061007a0069006f006e006500200064006900200064006f00630075006d0065006e0074006900200061007a00690065006e00640061006c0069002e0020004900200064006f00630075006d0065006e00740069002000500044004600200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f00700070007200650074007400650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000700061007300730065007200200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f0067002000730065006e006500720065002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006e00e40072002000640075002000760069006c006c00200073006b0061007000610020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f600720020007000e5006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b0072006900660074002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e0020006b0061006e002000f600700070006e006100730020006d006500640020004100630072006f0062006100740020006f00630068002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006100720065002e>
 /ENU (Use these settings with Distiller 7.0 or equivalent to create PDF documents suitable for IEEE Xplore. Created 29 November 2005. ****Preliminary version. NOT FOR GENERAL RELEASE***)
 >>
>> setdistillerparams
<<
 /HWResolution [600 600]
 /PageSize [612.000 792.000]
>> setpagedevice

